

*National Imaging Associates, Inc.	
Clinical guidelines	Original Date: September 1997
LUMBAR SPINE MRI	
CPT Codes: 72148, 72149, 72158, +0698T	Last Revised Date: December 2023
Guideline Number: NIA_CG_044	Implementation Date: July 2024

GENERAL INFORMATION

- It is an expectation that all patients receive care/services from a licensed clinician. All appropriate supporting documentation, including recent pertinent office visit notes, laboratory data, and results of any special testing must be provided. If applicable: All prior relevant imaging results and the reason that alternative imaging cannot be performed must be included in the documentation submitted.
- Where a specific clinical indication is not directly addressed in this guideline, medical necessity
 determination will be made based on widely accepted standard of care criteria. These criteria are
 supported by evidence-based or peer-reviewed sources such as medical literature, societal
 guidelines and state/national recommendations.

INDICATIONS FOR LUMBAR SPINE MRI

If there is a combination request for an overlapping body part, either requested at the same time or sequentially (within the past 3 months) the results of the prior study should be:

- Inconclusive or show a need for additional or follow up imaging evaluation OR
- The office notes should clearly document an indication why overlapping imaging is needed and how it will change management for the patient.

(*Unless approvable in the combination section as noted in the guidelines)

For evaluation of neurologic deficits¹⁻⁴

- With any of the following new neurological deficits documented on physical exam
 - Extremity muscular weakness (and not likely caused by plexopathy, or peripheral neuropathy)^{5, 6}
 - Pathologic or abnormal reflexes (and not likely caused by plexopathy, or peripheral neuropathy)
 - Absent/decreased sensory changes along a particular lumbar dermatome (nerve distribution): pin prick, touch, vibration, proprioception or temperature (and not likely caused by plexopathy, or peripheral neuropathy)

- Lower extremity increased muscle tone
- New onset bowel or bladder dysfunction (e.g., retention or incontinence)- not related to an inherent bowel or bladder process
- Gait abnormalities (see Table 1 for more details)
- New onset foot drop (Not related to a peripheral nerve injury, e.g., peroneal nerve)
- Cauda Equina Syndrome as evidence by severe back pain/sciatica along with one of the defined symptoms (see <u>Overview</u> section)

For evaluation of back pain with any of the following⁷⁻¹⁶

- With new or worsening objective neurologic deficits on exam, as above
- Failure of conservative treatment* for a minimum of six (6) weeks within the last six (6) months:¹⁶

NOTE – Failure of conservative treatment is defined as one of the following:

- Lack of meaningful improvement after a full course of treatment; OR
- Progression or worsening of symptoms during treatment; OR
- Documentation of a medical reason the member is unable to participate in treatment

Closure of medical or therapy offices, patient inconvenience, or noncompliance without explanation does not constitute "inability to complete" treatment.

- With progression or worsening of symptoms during the course of <u>conservative</u> treatment
- With an abnormal electromyography (EMG) or nerve conduction study (if performed) indicating a lumbar radiculopathy. (EMG is not recommended to determine the cause of axial lumbar, thoracic, or cervical spine pain.)¹⁵
- Isolated back pain in pediatric population¹⁷ conservative care not required if red flags present. Red flags that prompt imaging should include the presence of:
 - Age 5 or younger, OR
 - Constant pain, OR
 - Pain lasting > 4 weeks, OR
 - Abnormal neurologic examination, OR
 - Early morning stiffness and/or gelling, OR
 - Night pain that prevents or disrupts sleep, OR
 - o Radicular pain, OR
 - Fever or weight loss or malaise, OR
 - Postural changes (e.g., kyphosis or scoliosis), OR
 - Limp (or refusal to walk in a younger child < 5yo)^{18, 19}

As part of initial pre-operative / post-operative / procedural evaluation ("CT best examination to assess for hardware complication, extent of fusion and pseudoarthrosis" and MRI for cord, nerve root compression, disc pathology or post-op infection)

- For preoperative evaluation/planning
- CSF leak highly suspected and supported by patient history and/or physical exam findings (leak (known or suspected spontaneous (idiopathic) intracranial hypotension (SIH), post lumbar puncture headache, post spinal surgery headache, orthostatic headache, rhinorrhea or otorrhea, or cerebrospinal-venous fistula))
- A follow-up study may be needed to help evaluate a patient's progress after treatment, procedure, intervention, or surgery in the last 6 months. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested (routine surveillance post-op not indicated without symptoms)
- Surgical infection as evidenced by signs/symptoms, laboratory, or prior imaging findings
- New or changing neurological deficits or symptoms post-operatively ^{20, 21} see neurological deficit section above
- When combo requests (see <u>above statement</u>⁺) are submitted (i.e., MRI and CT of the spine), the office notes should clearly document the need for both studies to be done simultaneously, i.e., the need for both soft tissue and bony anatomy is required²²
 - Combination requests where both lumbar spine CT and MRI lumbar spine are both approvable (not an all-inclusive list)
 - Pathologic or complex fractures
 - Malignant process of spine with both bony and soft tissue involvement
 - Clearly documented indication for bony and soft tissue abnormality where assessment will change management for the patient

For evaluation of trauma or acute injury²³

- Presents with any of the neurological deficits as above
- With progression or worsening of symptoms during the course of conservative treatment*
- History of underlying spinal abnormalities (i.e., ankylosing spondylitis or diffuse idiopathic skeletal hyperostosis) (Both MRI and CT would be approvable) ²⁴
- When the patient is clinically unevaluable or there are preliminary imaging findings (x-ray or CT) needing further evaluation

("MRI and CT provide complementary information. When indicated it is appropriate to perform both examinations"). ²³

Pars defect (spondylolysis) or spondylolisthesis

- Pars defect (spondylolysis) or spondylolisthesis in adults when Flexion/Extension x-rays show instability
- Clinically suspected Pars defect (spondylolysis) which is not seen on plain films in pediatric population (< 18 yr) (flexion extension instability not required) and imaging would change treatment²⁵⁻²⁷

NOTE: Initial imaging (x-ray, or planar bone scan <u>without SPECT</u>; Bone scan with SPECT is superior to MRI and CT in the detection of pars interarticularis pathology including spondylolysis).²⁸

For evaluation of known or new compression fractures with worsening back pain²⁹

- With history of malignancy
 - o To aid in differentiation of benign osteoporotic fractures from metastatic disease
 - A follow up MRI in 6-8 weeks after initial MRI when initial imaging cannot decipher benign osteoporotic fracture from metastatic disease
- With an associated new focal neurologic deficit as above
- Prior to a planned surgery/intervention or if the results of the MRI will change management.

For evaluation of tumor, cancer, or metastasis with any of the following:

(MRI is usually the preferred study, but CT may be needed to further characterize solitary indeterminate lesions seen on MRI)³⁰⁻³²

• Primary tumor

- Initial staging primary spinal tumor³³
- Follow-up of known primary cancer of patient undergoing active treatment within the past year or as per surveillance imaging guidance for that cancer
- Known primary tumor with new signs or symptoms (e.g., new or increasing nontraumatic pain, physical, laboratory, and/or imaging findings)
- With an associated new focal neurologic deficit as above³⁴

Metastatic tumor

- With evidence of metastasis on bone scan needing further clarification OR inconclusive findings on a prior imaging exam
- With an associated new focal neurologic deficit³⁴
- Known malignancy with new signs or symptoms (e.g., new or increasing nontraumatic pain, radiculopathy or back pain that occurs at night and wakes the patient from sleep with known active cancer, physical, laboratory, and/or imaging findings) in a tumor that tends to metastasize to the spine^{35, 36}

Further evaluation of indeterminate findings on prior imaging (unless follow up is otherwise specified within the guideline):

- For initial evaluation of an inconclusive finding on a prior imaging report that requires further clarification.
- One follow-up exam of a prior indeterminate MR/CT finding to ensure no suspicious interval change has occurred. (No further surveillance unless specified as highly suspicious or change was found on last follow-up exam.)

Indication for combination studies for the initial pre-therapy staging of cancer, OR active monitoring for recurrence as clinically indicated OR evaluation of suspected metastases

 ≤ 5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine

For evaluation of known or suspected infection (osteomyelitis), abscess, or inflammatory disease^{37, 38}

Infection

- As evidenced by signs and/or symptoms, laboratory (i.e., abnormal white blood cell count, ESR and/or CRP) or prior imaging findings³⁹
- Follow-up imaging of infection
 - With worsening symptoms/laboratory values (i.e., white blood cell count, ESR/CRP) or radiographic findings⁴⁰

Spondyloarthropathies

 Ankylosing Spondylitis/Spondyloarthropathies with non-diagnostic or indeterminate x-ray and rheumatology workup

For evaluation of spine abnormalities related to immune system suppression, e.g., HIV, chemotherapy, leukemia, or lymphoma³⁸

• As evidenced by signs/symptoms, laboratory, or prior imaging findings

Other Indications for a Lumbar Spine MRI

(Note: See <u>combination request</u>, below, for initial advanced imaging assessment and preoperatively)

- Tethered cord, or spinal dysraphism (known or suspected) based on preliminary imaging, neurological exam, and/or high-risk cutaneous stigmata⁴¹⁻⁴³
- Known anorectal malformations^{44, 45}
- Suspicious sacral dimple (those that are deep, larger than 0.5 cm, located within the superior portion of the gluteal crease or above the gluteal crease, multiple dimples, or associated with other cutaneous markers)⁴⁶ or duplicated or deviated gluteal cleft⁴⁷
 - o in patients <3 months should have ultrasound
- Toe walking in a child when associated with upper motor neuron signs, including hyperreflexia, spasticity; or orthopedic deformity with concern for spinal cord pathology and/or tethered cord (e.g., pes cavus, clawed toes, leg or foot length deformity (excluding tight heel cords))
- Known Chiari II (Arnold-Chiari syndrome), III, or IV malformation.
- For follow-up/repeat evaluation of Arnold-Chiari I with new signs or symptoms suggesting recurrent spinal cord tethering (For initial diagnosis see below)
- Suspected neuroinflammatory Conditions/Diseases (e.g., sarcoidosis, Behcet's)

After detailed neurological exam and appropriate initial work up completed

COMBINATION OF STUDIES WITH LUMBAR SPINE MRI

Any combination of Cervical and/or Thoracic and/or Lumbar MRIs

Note: These body regions might be evaluated separately or in combination as documented in the clinical notes by physical examination findings (e.g., localization to a particular segment of the spinal cord), patient history, and other available information, including prior imaging.

Exception- Indications for combination studies^{48, 49}: Are approved indications as noted below and being performed in children who will need anesthesia for the procedure

- Any combination of these studies for:
 - Survey/complete initial assessment of infant/child with congenital scoliosis or juvenile idiopathic scoliosis under the age of 10⁵⁰⁻⁵² (e.g., congenital scoliosis, idiopathic scoliosis, scoliosis with vertebral anomalies)
 - In the presence of neurological deficit, progressive spinal deformity, or for preoperative planning⁵³
 - Back pain with known vertebral anomalies (hemivertebrae, hypoplasia, agenesis, butterfly, segmentation defect, bars, or congenital wedging) in a child on preliminary imaging
 - Scoliosis with any of the following⁵⁴:
 - Progressive spinal deformity
 - Neurologic deficit (new or unexplained)
 - Early onset
 - Atypical curve (e.g., short segment, > 30' kyphosis, left thoracic curve, associated organ anomalies)
 - Pre-operative planning; OR
 - When office notes clearly document how imaging will change management
- Arnold-Chiari malformations^{55, 56}
 - Arnold-Chiari I
 - For evaluation of spinal abnormalities associated with initial diagnosis of Arnold-Chiari Malformation. (C/T/L spine due to association with tethered cord and syringomyelia), and initial imaging has not been completed^{42,50}
 - Arnold-Chiari II-IV For initial evaluation and follow-up as appropriate
 - Usually associated with open and closed spinal dysraphism, particularly meningomyelocele)
- Tethered cord, or spinal dysraphism (known or suspected) based on preliminary imaging, neurological exam, and/or high-risk cutaneous stigmata, 41-43 when anesthesia required for imaging 57 (e.g., meningomyelocele, lipomeningomyelocele,

diastematomyelia, fatty/thickened filum terminale, and other spinal cord malformations)

- Oncological Applications (e.g., primary nervous system, metastatic)
 - o Drop metastasis from brain or spine (imaging also includes brain)- see Overview
 - Suspected leptomeningeal carcinomatosis (LC)⁵⁸ -see Overview
 - Any combination of these for spinal survey in patient with metastases
 - o Tumor evaluation and monitoring in neurocutaneous syndromes See Overview
- CSF leak highly suspected and supported by patient history and/or physical exam findings (leak (known or suspected spontaneous (idiopathic) intracranial hypotension (SIH), post lumbar puncture headache, post spinal surgery headache, orthostatic headache, rhinorrhea or otorrhea, or cerebrospinal-venous fistula))

BACKGROUND

Magnetic resonance imaging (MRI) is used in the evaluation, diagnosis, and management of spine-related conditions, e.g., degenerative disc disease, cauda equine compression, radiculopathy, infections, or cancer in the lumbar spine. MRI provides high quality multiplanar images of organs and structures within the body without the use of x-rays or radiation. In the lumbar area where gonadal exposure may occur, MRI's lack of radiation is an advantage.

OVERVIEW

*Conservative Treatment

Non-operative conservative treatment should include a multimodality approach consisting of at least one (1) active and one (1) inactive component targeting the affected region.

Active Modalities

- Physical therapy
- Physician-supervised home exercise program**
- Chiropractic care

Inactive Modalities

- Medications (e.g., NSAIDs, steroids, analgesics)
- Injections (e.g., epidural injection, selective nerve root block)
- Medical Devices (e.g., TENS unit, bracing)

**Home Exercise Program (HEP)

The following two elements are required to meet conservative therapy guidelines for HEP:10,59

 Documentation of an exercise prescription/plan provided by a physician, physical therapist, or chiropractor; AND

 Follow-up documentation regarding completion of HEP after the required 6-week timeframe or inability to complete HEP due to a documented medical reason (e.g., increased pain or inability to physically perform exercises).

Table 1: Gait and spine imaging⁶⁰⁻⁶⁵

Gait	Characteristic	Work up/Imaging
Hemiparetic	Spastic unilateral, circumduction	Brain and/or, Cervical spine imaging based on associated symptoms
Diplegic	Spastic bilateral, circumduction	Brain, Cervical and Thoracic Spine imaging
Myelopathic	Wide based, stiff, unsteady	Cervical and/or Thoracic spine MRI based on associated symptoms
Cerebellar taxic	Broad based, clumsy, staggering, lack of coordination, usually also with limb ataxia	Brain imaging see Brain MRI Guideline
Apraxic	Magnetic, shuffling, difficulty initiating	Brain imaging see Brain MRI Guideline
Parkinsonian	Stooped, small steps, rigid, turning en bloc, decreased arm swing	Brain Imaging see Brain MRI Guideline
Choreiform	Irregular, jerky, involuntary movements	Medication review, consider brain imaging as per movement disorder Brain MR guidelines
Sensory ataxic	Cautious, stomping, worsening without visual input (ie + Romberg)	EMG, blood work, consider spinal (cervical or thoracic cord imaging) imaging based on EMG
Neurogenic	Steppage, dragging of toes	 EMG initial testing; BUT if there is a foot drop, lumbar spine MRI is appropriate without EMG Pelvis MR if there is evidence of plexopathy
Vestibular	Insecure, veer to one side, worse when eyes closed, vertigo	Consider Brain/IAC MRI see Brain MRI Guideline

Risk Stratification for Various Cutaneous Markers			
<u>High Risk</u>	Intermediate Risk	Low Risk	
 Hypertrichosis Infantile hemangioma Atretic meningocele DST Subcutaneous lipoma Caudal appendage Segmental hemangiomas in association with LUMBAR[‡] syndrome 	 Capillary malformations (also referred to as NFS or salmon patch when pink and poorly defined or PWS when darker red and well-defined) 	 Coccygeal dimple Light hair Isolated café au lait spots Mongolian spots Hypo- and hypermelanotic macules or papules Deviated or forked gluteal cleft Nonmidline lesions 	

Sacral Dimples – Simple midline dimples are the most commonly encountered dorsal cutaneous stigmata in neonates and indicate low risk for spinal dysraphism. Only atypical dimples are associated with a high risk for spinal dysraphism, particularly those that are large (>5 mm), high on the back (>2.5 cm from the anus) or appear in combination with other lesions. High-risk cutaneous stigmata in neonates include hemangiomas, upraised lesions (i.e., masses, tails, and hairy patches), and multiple cutaneous stigmata (Table 2).

myelopathy, bony defects, anorectal malformations, arterial anomalies, and renal anomalies.

Tethered spinal cord syndrome – This is a neurological disorder caused by tissue attachments that limit the movement of the spinal cord within the spinal column. Although this condition is rare, it can continue undiagnosed into adulthood. The primary cause is myelomeningocele and lipomyelomeningocele; the following are other associations that vary in severity of symptoms and treatment.

- Dermal sinus tract (a rare congenital deformity)
- Diastematomyelia (split spinal cord)
- Lipoma
- Tumor
- Thickened/tight filum terminale
- History of spine trauma/surgery
- Arnold-Chiari malformation

Magnetic resonance imaging (MRI) can display the low level of the spinal cord and a thickened filum terminale, the thread-like extension of the spinal cord in the lower back. Treatment

depends upon the underlying cause of the tethering. If the only abnormality is a thickened, shortened filum, then limited surgical treatment may suffice.

Back Pain with Cancer History – Bone is the third most common site of metastases after the liver and the lungs, and approximately two-thirds of all osseous metastases occur in the spine. Approximately 60–70% of patients with systemic cancer will have spinal metastasis. Radiographic (x-ray) examination should be performed in cases of back pain when a patient has a cancer history, but without known active cancer or a tumor that tends to metastasize to the spine. This can make a diagnosis in many cases. This may occasionally allow for selection of bone scan in lieu of MRI in some cases. When radiographs do not answer the clinical question, then MRI may be appropriate after a consideration of conservative care.

"Neoplasms causing VCF (vertebral compression fractures) include 1) primary bone neoplasms, such as hemangioma or giant cell tumors, and tumor-like conditions causing bony and cellular remodeling, such as aneurysmal bone cysts, or Paget's disease (osteitis deformans); 2) primary malignant neoplasms including but not limited to multiple myeloma and lymphoma; and 3) metastatic neoplasms."²⁹

Most common spine metastasis involving primary metastasis originate from the following tumors in descending order: breast (21%), lung (19%), prostate (7.5%), renal (5%), gastrointestinal (4.5%), and thyroid (2.5%). While all tumors can seed to the spine, the cancers mentioned above metastasize to the spinal column early in the disease process.³⁵

Cauda Equina Syndrome

- Symptoms include severe back pain or sciatica along with one or more of the following:
 - Saddle anesthesia loss of sensation restricted to the area of the buttocks, perineum, and inner surfaces of the thighs (areas that would sit on a saddle)
 - Recent bladder/bowel dysfunction
 - Achilles reflex absent on both sides
 - Sexual dysfunction that can come on suddenly
 - Absent anal reflex and bulbocavernosus reflex

MRI and Neurocutaneous Syndromes

- In NF-1, clinical evaluation appears to be more useful to detect complications than is screening imaging in asymptomatic patients. Imaging is indicated in evaluation of suspected tumors based on clinical evaluation and for follow-up of known intracranial and intraspinal I tumors.⁶⁷
- Conversely in NF-2, routine MR imaging screening is always indicated, given the high prevalence of CNS tumors, especially vestibular schwannomas. In patients with NF-2, routine screening brain/IAC imaging is indicated annually starting from age 10, if asymptomatic, or earlier with clinical signs/symptoms. Most individuals with NF2

eventually develop a spinal tumor, mostly commonly schwannomas, but meningioma and ependymomas are also seen. Spinal imaging at baseline and every 2 to 3 years is also advised with more frequent imaging, if warranted, based on sites of tumor involvement.⁶⁸

- In patients with tuberous sclerosis, brain MRI should be obtained every 1-3 years up until age 25 for surveillance for CNS abnormalities.⁶⁹
- In Von Hippel Lindau syndrome, imaging of the brain and spinal cord for hemangioblastomas is recommended every 2 years.⁷⁰
- In Sturge Weber Syndrome, brain MRI can rule out intracranial involvement only after age 1 and is recommended in patients < 1 year only if symptomatic.⁷¹

Drop Metastases⁷² – Drop metastases are intradural extramedullary spinal metastases that arise from intracranial lesions. Common examples of intracranial neoplasms that result in drop metastases include pineal tumors, ependymomas, medulloblastomas, germinomas, primitive neuroectodermal tumors (PNET), glioblastomas multiform, anaplastic astrocytomas, oligodendrogliomas and less commonly choroid plexus neoplasms and teratomas.

Leptomeningeal Carcinomatosis⁷³ – Leptomeningeal carcinomatosis is a complication of cancer in which cancerous cells spread to the membranes (meninges) that covers the brain and spinal cord. The most common solid tumors that involve the leptomeninges are breast, lung, melanoma, gastrointestinal, and primary central nervous system tumors.

POLICY HISTORY

Date	Summary
Dec 2023	Conservative treatment language updated in body and background
May 2023	 Updated references Updated background section Clarified pathological reflexes Added "Further evaluation of indeterminate or questionable findings on prior imaging": Clarified cerebellar ataxia in gait table Removed "radicular pain" and "malaise" from Isolated Back Pain in the Pediatric population: Red flags General Information moved to beginning of guideline with added statement on clinical indications not addressed in this guideline Added statement regarding further evaluation of indeterminate findings on prior imaging Removed Additional Resources
March 2022	 Added Combination request for overlapping body part statement Clarified muscle weakness not related to plexopathy or peripheral neuropathy Clarified bowel and bladder dysfunction – not related to an inherent bowel or bladder problem Descriptions for tethered cord Background section of Drop Metastases Background section of Leptomeningeal Carcinomatosis Clarified toe walking in pediatric patient Added section on neuroinflammatory conditions Removed Removed from combination section syrinx and syringomyelia and added subsection for cervical and thoracic spine section Removed pediatric back pain from the total spine combination section

REFERENCES:

- 1. Stolper K, Haug JC, Christensen CT, Samsey KM, April MD. Prevalence of thoracic spine lesions masquerading as cauda equina syndrome: yield of a novel magnetic resonance imaging protocol. *Intern Emerg Med.* Dec 2017;12(8):1259-1264. doi:10.1007/s11739-016-1565-9
- 2. Acharya AB, Fowler JB. Chaddock Reflex. StatPearls Publishing. Updated June 27, 2022. Accessed December 1, 2022. https://www.ncbi.nlm.nih.gov/books/NBK519555/
- 3. Evidence-Based Clinical Guidelines for Multidisciplinary Spine Care: Diagnosis and Treatment of Cervical Radiculopathy from Degenerative Disorders. North American Spine Society (NASS). Updated 2010. Accessed December 1, 2022.
- https://www.spine.org/Portals/0/Assets/Downloads/ResearchClinicalCare/Guidelines/CervicalRadiculopathy.pdf
- 4. Albert TJ, Murrell SE. Surgical management of cervical radiculopathy. *J Am Acad Orthop Surg*. Nov-Dec 1999;7(6):368-76. doi:10.5435/00124635-199911000-00003
- 5. Moore KR, Tsuruda JS, Dailey AT. The value of MR neurography for evaluating extraspinal neuropathic leg pain: a pictorial essay. *AJNR Am J Neuroradiol*. Apr 2001;22(4):786-94.
- 6. Dydyk AM, Hameed S. Lumbosacral Plexopathy. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC. Updated March 26, 2022. Accessed November 16, 2022. https://www.ncbi.nlm.nih.gov/books/NBK556030/
- 7. Allegri M, Montella S, Salici F, et al. Mechanisms of low back pain: a guide for diagnosis and therapy. *F1000Res*. 2016;5doi:10.12688/f1000research.8105.2
- 8. Ammendolia C, Chow N. Clinical outcomes for neurogenic claudication using a multimodal program for lumbar spinal stenosis: a retrospective study. *J Manipulative Physiol Ther*. Mar-Apr 2015;38(3):188-94. doi:10.1016/j.jmpt.2014.12.006
- 9. Jarvik JG, Gold LS, Comstock BA, et al. Association of early imaging for back pain with clinical outcomes in older adults. *Jama*. Mar 17 2015;313(11):1143-53. doi:10.1001/jama.2015.1871 10. Last AR, Hulbert K. Chronic low back pain: evaluation and management. *Am Fam Physician*. Jun 15 2009;79(12):1067-74.
- 11. Qaseem A, Wilt TJ, McLean RM, et al. Noninvasive Treatments for Acute, Subacute, and Chronic Low Back Pain: A Clinical Practice Guideline From the American College of Physicians. *Ann Intern Med*. Apr 4 2017;166(7):514-530. doi:10.7326/m16-2367
- 12. Schneider MJ, Ammendolia C, Murphy DR, et al. Comparative Clinical Effectiveness of Nonsurgical Treatment Methods in Patients With Lumbar Spinal Stenosis: A Randomized Clinical Trial. *JAMA Netw Open*. Jan 4 2019;2(1):e186828. doi:10.1001/jamanetworkopen.2018.6828
- 13. American Academy of Family Physicians. Twenty things physicians and patients should question: Don't do imaging for low back pain within the first six weeks, unless red flags are present. Choosing Wisely Initiative ABIM Foundation. Updated 2021. Accessed December 1, 2022. https://www.choosingwisely.org/clinician-lists/american-academy-family-physicians-imaging-low-back-pain/
- 14. American College of Emergency Physicians. Five Things Physicians and Patients Should Question. Five More Things Physicians and Patients Should Question. Choosing Wisely Initiative

ABIM Foundation. Updated June 18, 2018. Accessed December 1, 2022.

https://www.choosingwisely.org/wp-content/uploads/2015/02/ACEP-Choosing-Wisely-List.pdf 15. North American Spine Society. Five things physicians and patients should question: Don't use electromyography (EMG) and nerve conduction studies (NCS) to determine the cause of axial lumbar, thoracic or cervical spine pain. Choosing Wisely Initiative ABIM Foundation. Updated 2019. Accessed December 1, 2022. https://www.choosingwisely.org/clinician-lists/nass-emg-nerve-conduction-studies-to-determine-cause-of-spine-pain/

16. American College of Radiology. ACR Appropriateness Criteria® Low Back Pain. American College of Radiology (ACR). Updated 2021. Accessed March 8, 2023.

https://acsearch.acr.org/docs/69483/Narrative/

- 17. American College of Radiology. ACR Appropriateness Criteria®Back Pain—Child. American College of Radiology (ACR). Updated 2016. Accessed December 1, 2022. https://acsearch.acr.org/docs/3099011/Narrative/
- 18. Bernstein RM, Cozen H. Evaluation of back pain in children and adolescents. *Am Fam Physician*. Dec 1 2007;76(11):1669-76.
- 19. Feldman DS, Straight JJ, Badra MI, Mohaideen A, Madan SS. Evaluation of an algorithmic approach to pediatric back pain. *J Pediatr Orthop*. May-Jun 2006;26(3):353-7. doi:10.1097/01.bpo.0000214928.25809.f9
- 20. Rao D, Scuderi G, Scuderi C, Grewal R, Sandhu SJ. The Use of Imaging in Management of Patients with Low Back Pain. *J Clin Imaging Sci.* 2018;8:30. doi:10.4103/jcis.JCIS_16_18
- 21. Corona-Cedillo R, Saavedra-Navarrete MT, Espinoza-Garcia JJ, Mendoza-Aguilar AN, Ternovoy SK, Roldan-Valadez E. Imaging Assessment of the Postoperative Spine: An Updated Pictorial Review of Selected Complications. *Biomed Res Int*. 2021;2021:9940001. doi:10.1155/2021/9940001
- 22. Fisher BM, Cowles S, Matulich JR, Evanson BG, Vega D, Dissanaike S. Is magnetic resonance imaging in addition to a computed tomographic scan necessary to identify clinically significant cervical spine injuries in obtunded blunt trauma patients? *Am J Surg*. Dec 2013;206(6):987-93; discussion 993-4. doi:10.1016/j.amjsurg.2013.08.021
- 23. American College of Radiology. ACR Appropriateness Criteria® Suspected Spine Trauma American College of Radiology. Updated 2018. Accessed December 1, 2022. https://acsearch.acr.org/docs/69359/Narrative/
- 24. Koivikko MP, Koskinen SK. MRI of cervical spine injuries complicating ankylosing spondylitis. *Skeletal Radiol*. Sep 2008;37(9):813-9. doi:10.1007/s00256-008-0484-x
- 25. Kobayashi A, Kobayashi T, Kato K, Higuchi H, Takagishi K. Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging. *Am J Sports Med*. Jan 2013;41(1):169-76. doi:10.1177/0363546512464946
- 26. Cohen E, Stuecker RD. Magnetic resonance imaging in diagnosis and follow-up of impending spondylolysis in children and adolescents: early treatment may prevent pars defects. *J Pediatr Orthop B*. Mar 2005;14(2):63-7. doi:10.1097/01202412-200503000-00001
- 27. Rush JK, Astur N, Scott S, Kelly DM, Sawyer JR, Warner WC, Jr. Use of magnetic resonance imaging in the evaluation of spondylolysis. *J Pediatr Orthop*. Apr-May 2015;35(3):271-5. doi:10.1097/bpo.0000000000000244

- 28. Matesan M, Behnia F, Bermo M, Vesselle H. SPECT/CT bone scintigraphy to evaluate low back pain in young athletes: common and uncommon etiologies. *J Orthop Surg Res*. Jul 7 2016;11(1):76. doi:10.1186/s13018-016-0402-1
- 29. American College of Radiology. ACR Appropriateness Criteria® Management of Vertebral Compression Fractures. American College of Radiology. Updated 2022. Accessed December 1, 2022. https://acsearch.acr.org/docs/70545/Narrative/
- 30. McDonald MA, Kirsch CFE, Amin BY, et al. ACR Appropriateness Criteria(*) Cervical Neck Pain or Cervical Radiculopathy. *J Am Coll Radiol*. May 2019;16(5s):S57-s76. doi:10.1016/j.jacr.2019.02.023
- 31. Roberts CC, Daffner RH, Weissman BN, et al. ACR appropriateness criteria on metastatic bone disease. *J Am Coll Radiol*. Jun 2010;7(6):400-9. doi:10.1016/j.jacr.2010.02.015
- 32. Kim YS, Han IH, Lee IS, Lee JS, Choi BK. Imaging findings of solitary spinal bony lesions and the differential diagnosis of benign and malignant lesions. *J Korean Neurosurg Soc.* 2012;52(2):126-132. doi:10.3340/jkns.2012.52.2.126
- 33. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Central Nervous System Cancers Version 2.2022. National Comprehensive Cancer Network (NCCN). Updated September 29, 2022. Accessed January 23, 2023.

https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf

- 34. Alexandru D, So W. Evaluation and management of vertebral compression fractures. *Perm J.* Fall 2012;16(4):46-51. doi:10.7812/tpp/12-037
- 35. Ziu E, Viswanathan VK, Mesfin FB. Spinal Metastasis. StatPearls Publishing. Updated August
- 22, 2022. Accessed December 1, 2022. https://www.ncbi.nlm.nih.gov/books/NBK441950/
- 36. American College of Radiology. ACR Appropriateness Criteria® Cervical Neck Pain or Cervical Radiculopathy. American College of Radiology. Updated 2018. Accessed December 1, 2022. https://acsearch.acr.org/docs/69426/Narrative/
- 37. Lener S, Hartmann S, Barbagallo GMV, Certo F, Thomé C, Tschugg A. Management of spinal infection: a review of the literature. *Acta Neurochir (Wien)*. Mar 2018;160(3):487-496. doi:10.1007/s00701-018-3467-2
- 38. American College of Radiology. ACR Appropriateness Criteria® Suspected Spine Infection. American College of Radiology (ACR). Updated 2021. Accessed December 1, 2022. https://acsearch.acr.org/docs/3148734/Narrative/
- 39. Bond A, Manian FA. Spinal Epidural Abscess: A Review with Special Emphasis on Earlier Diagnosis. *Biomed Res Int*. 2016;2016:1614328. doi:10.1155/2016/1614328
- 40. Berbari EF, Kanj SS, Kowalski TJ, et al. 2015 Infectious Diseases Society of America (IDSA) Clinical Practice Guidelines for the Diagnosis and Treatment of Native Vertebral Osteomyelitis in Adults. *Clin Infect Dis*. Sep 15 2015;61(6):e26-46. doi:10.1093/cid/civ482
- 41. Düz B, Gocmen S, Secer HI, Basal S, Gönül E. Tethered cord syndrome in adulthood. *J Spinal Cord Med*. 2008;31(3):272-8. doi:10.1080/10790268.2008.11760722
- 42. Milhorat TH, Bolognese PA, Nishikawa M, et al. Association of Chiari malformation type I and tethered cord syndrome: preliminary results of sectioning filum terminale. *Surg Neurol*. Jul 2009;72(1):20-35. doi:10.1016/j.surneu.2009.03.008

- 43. Zalatimo O. Tethered Spinal Cord Syndrome. American Association of Neurological Surgeons (AANS). Accessed December 1, 2022. https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Tethered-Spinal-Cord-Syndrome
- 44. Kim SM, Chang HK, Lee MJ, et al. Spinal dysraphism with anorectal malformation: lumbosacral magnetic resonance imaging evaluation of 120 patients. *J Pediatr Surg*. Apr 2010;45(4):769-76. doi:10.1016/j.jpedsurg.2009.10.094
- 45. Morimoto K, Takemoto O, Wakayama A. Tethered cord associated with anorectal malformation. *Pediatr Neurosurg*. Feb 2003;38(2):79-82. doi:10.1159/000068048
- 46. D'Alessandro DM. Does This Sacral Dimple Need to be Evaluated? PediatricEducation.org™. Updated July 20, 2009. Accessed November 19, 2022.
- https://pediatriceducation.org/2009/07/20/does-this-sacral-dimple-need-to-be-evaluated/47. Zywicke HA, Rozzelle CJ. Sacral dimples. *Pediatr Rev.* Mar 2011;32(3):109-13; quiz 114, 151. doi:10.1542/pir.32-3-109
- 48. American College of Radiology. ACR Appropriateness Criteria® Headache. American College of Radiology. Updated 2022. Accessed January 23, 2023.

https://acsearch.acr.org/docs/69482/Narrative/

49. American College of Radiology. ACR Appropriateness Criteria® Headache-Child. American College of Radiology. Updated 2017. Accessed December 1, 2022.

https://acsearch.acr.org/docs/69439/Narrative/

- 50. Strahle J, Smith BW, Martinez M, et al. The association between Chiari malformation Type I, spinal syrinx, and scoliosis. *J Neurosurg Pediatr*. Jun 2015;15(6):607-11. doi:10.3171/2014.11.Peds14135
- 51. Juvenile Scoliosis. Scoliosis Research Society (SRS). Accessed December 1, 2022. https://www.srs.org/professionals/online-education-and-resources/conditions-and-treatments/juvenile-scoliosis
- 52. American College of Radiology. ACR Appropriateness Criteria® Scoliosis-Child. American College of Radiology. Updated 2018. Accessed December 1, 2022. https://acsearch.acr.org/docs/3101564/Narrative/
- 53. Trenga AP, Singla A, Feger MA, Abel MF. Patterns of congenital bony spinal deformity and associated neural anomalies on X-ray and magnetic resonance imaging. *J Child Orthop*. Aug 2016;10(4):343-52. doi:10.1007/s11832-016-0752-6
- 54. Ozturk C, Karadereler S, Ornek I, Enercan M, Ganiyusufoglu K, Hamzaoglu A. The role of routine magnetic resonance imaging in the preoperative evaluation of adolescent idiopathic scoliosis. *Int Orthop*. Apr 2010;34(4):543-6. doi:10.1007/s00264-009-0817-y
- 55. Strahle J, Muraszko KM, Kapurch J, Bapuraj JR, Garton HJ, Maher CO. Chiari malformation Type I and syrinx in children undergoing magnetic resonance imaging. *J Neurosurg Pediatr*. Aug 2011;8(2):205-13. doi:10.3171/2011.5.Peds1121
- 56. Radic JAE, Cochrane DD. Choosing Wisely Canada: Pediatric Neurosurgery Recommendations. *Paediatr Child Health*. Sep 2018;23(6):383-387. doi:10.1093/pch/pxy012 57. Hertzler DA, 2nd, DePowell JJ, Stevenson CB, Mangano FT. Tethered cord syndrome: a review of the literature from embryology to adult presentation. *Neurosurg Focus*. Jul 2010;29(1):E1. doi:10.3171/2010.3.Focus1079

- 58. Shah LM, Salzman KL. Imaging of spinal metastatic disease. *Int J Surg Oncol*. 2011;2011:769753. doi:10.1155/2011/769753
- 59. American College of Radiology. ACR Appropriateness Criteria® Low Back Pain. American College of Radiology (ACR). Updated 2021. Accessed January 29, 2023. https://acsearch.acr.org/docs/69483/Narrative/
- 60. Pirker W, Katzenschlager R. Gait disorders in adults and the elderly: A clinical guide. *Wien Klin Wochenschr*. Feb 2017;129(3-4):81-95. doi:10.1007/s00508-016-1096-4
- 61. Chhetri SK, Gow D, Shaunak S, Varma A. Clinical assessment of the sensory ataxias; diagnostic algorithm with illustrative cases. *Pract Neurol*. Aug 2014;14(4):242-51. doi:10.1136/practneurol-2013-000764
- 62. Foster H, Drummond P, Jandial S, Clinch J, Wood M, Driscoll S. Evaluation of gait disorders in children. BMJ Best Practice. Updated February 23, 2021. Accessed January 23, 2023. https://bestpractice.bmj.com/topics/en-us/709
- 63. Marshall FJ. Approach to the elderly patient with gait disturbance. *Neurol Clin Pract*. Jun 2012;2(2):103-111. doi:10.1212/CPJ.0b013e31825a7823
- 64. Standford Medicine. Gait Abnormalities. Stanford University. Accessed January 23, 2023. https://stanfordmedicine25.stanford.edu/the25/gait.html
- 65. Haynes KB, Wimberly RL, VanPelt JM, Jo CH, Riccio AI, Delgado MR. Toe Walking: A Neurological Perspective After Referral From Pediatric Orthopaedic Surgeons. *J Pediatr Orthop*. Mar 2018;38(3):152-156. doi:10.1097/bpo.00000000001115
- 66. Dias M, Partington M. Congenital Brain and Spinal Cord Malformations and Their Associated Cutaneous Markers. *Pediatrics*. Oct 2015;136(4):e1105-19. doi:10.1542/peds.2015-2854
- 67. Borofsky S, Levy LM. Neurofibromatosis: types 1 and 2. *AJNR Am J Neuroradiol*. Dec 2013;34(12):2250-1. doi:10.3174/ajnr.A3534
- 68. Evans DGR, Salvador H, Chang VY, et al. Cancer and Central Nervous System Tumor Surveillance in Pediatric Neurofibromatosis 2 and Related Disorders. *Clin Cancer Res.* Jun 15 2017;23(12):e54-e61. doi:10.1158/1078-0432.Ccr-17-0590
- 69. Krueger DA, Northrup H. Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. *Pediatr Neurol*. Oct 2013;49(4):255-65. doi:10.1016/j.pediatrneurol.2013.08.002
- 70. Varshney N, Kebede AA, Owusu-Dapaah H, Lather J, Kaushik M, Bhullar JS. A Review of Von Hippel-Lindau Syndrome. *J Kidney Cancer VHL*. 2017;4(3):20-29. doi:10.15586/jkcvhl.2017.88
- 71. Comi AM. Presentation, diagnosis, pathophysiology, and treatment of the neurological features of Sturge-Weber syndrome. *Neurologist*. Jul 2011;17(4):179-84. doi:10.1097/NRL.0b013e318220c5b6
- 72. Ahmed A. MRI features of disseminated 'drop metastases'. *S Afr Med J.* Jul 2008;98(7):522-3.
- 73. Batool A, Kasi A. Leptomeningeal Carcinomatosis. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC. Updated April 5, 2022. Accessed December 1, 2022. https://www.ncbi.nlm.nih.gov/books/NBK499862/

Reviewed / Approved by NIA Clinical Guideline Committee

Disclaimer: National Imaging Associates, Inc. (NIA) authorization policies do not constitute medical advice and are not intended to govern or otherwise influence the practice of medicine. These policies are not meant to supplant your normal procedures, evaluation, diagnosis, treatment and/or care plans for your patients. Your professional judgement must be exercised and followed in all respects with regard to the treatment and care of your patients. These policies apply to all Evolent Health LLC subsidiaries including, but not limited to, National Imaging Associates ("NIA"). The policies constitute only the reimbursement and coverage guidelines of NIA. Coverage for services varies for individual members in accordance with the terms and conditions of applicable Certificates of Coverage, Summary Plan Descriptions, or contracts with governing regulatory agencies. NIA reserves the right to review and update the guidelines at its sole discretion. Notice of such changes, if necessary, shall be provided in accordance with the terms and conditions of provider agreements and any applicable laws or regulations.

